
Topic 3: Choropleth Mapping and Analysis
Dr. Kam Tin Seong

Assoc. Professor of Information Systems

School of Computing and Information Systems,
Singapore Management University

2019/11/25 (updated: 2021-05-12)

Content
Choropleth Mapping with in R

Classification of maps
Data Classification

Analytical Mapping Techniques
Box map
Mapping rates

2 / 55

Choropleth Map
A choropleth map is a type of thematic map in which areas are shaded or patterned in
proportion to a statistical variable that represents an aggregate summary of a geographic
characteristic within each area, such as population or per-capita income.

3 / 55

Selected popular mapping
packages
CRAN Task View: Analysis of Spatial Data

tmap
mapsf
leaflet
ggplot2. Read Chapter 6: Maps of
'ggplot2: Elegant Graphics for Data
Analysis' for more detail.
ggmap
quickmapr
mapview

Other packages
RColorBrewer
classInt

Mapping packages in R

4 / 55

https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/packages/tmap/index.html
https://riatelab.github.io/mapsf/index.html
https://cran.r-project.org/web/packages/leaflet/index.html
https://ggplot2.tidyverse.org/index.html
https://ggplot2-book.org/maps.html
https://cran.r-project.org/web/packages/ggmap/index.html
https://cran.r-project.org/web/packages/quickmapr/index.html
https://cran.r-project.org/web/packages/mapview/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/classInt/index.html

tmap is a R package specially designed
for creating thematic maps using the
pricinples of the Grammar of
Graphics.
It offers a flexible, layer-based, and
easy to use approach to create
thematic maps, such as choropleths
and proportional symbol maps.
It supports two modes: plot(static
maps) and view (interactive maps).
It provides shiny integration(with
tmapOutput and renderTmap).

Introducing tmap

5 / 55

https://github.com/mtennekes/tmap

Introducing tmap
Shape objects

tmap supports simple features from the new sf package.
It also supports the class Spatial and Raster, respectively from the sp and the raster package. The supported
subclasses are:

6 / 55

Basic Choropleth Mapping using tmap
In this hands-on exercise, you will learn how to plot choropleth maps by using tmap
package.

By the end of this hands-on exercise, you will be able:

to import an aspatial data in R by using readr pakage,
to import geospatial data (ESRI shapefile) into R as simple feature objects using sf
package,
to perform data wrangling using dplyr and tidyr packages,
to plot choropleth maps using tmap package.

7 / 55

https://github.com/mtennekes/tmap

For this in-class exercise, the following R
packages are needed:

sf,
tmap, and
tidyverse

Write a code chunk to install and launch
these packages in R.

The code chunk should look similar to
below:

packages = c('sf', 'tmap', 'tidyverse')
for (p in packages){
 if(!require(p, character.only = T)){
 install.packages(p)
 }
 library(p,character.only = T)
}

Getting Started

8 / 55

In order to prepare a choropleth map, we
need a geospatial data and an associated
attribute data. In this exercise, the
geospatial data is URA's Master Plan 2014
Subzone Boundary (i.e.
MP14_SUBZONE_WEB_PL). It can be
downloaded from data.gov.sg.

Write a code chunk to import
MP14_SUBZONE_WEB_PL into R as an sf
data.frame. Name the sf data.frame
mpsz.

The code chunk

mpsz <- st_read(dsn = "data/geospatial",
 layer = "MP14_SUBZONE_WEB_PL")

Reading layer `MP14_SUBZONE_WEB_PL' from data sour
Simple feature collection with 323 features and 15
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax:
Projected CRS: SVY21

Importing Geospatial Data

9 / 55

In this exercise, you are required to:

download the latest Singapotre
Residents by Planning Area/Subzone, Age
Group, Sex and Type of Dwelling, June
2011-2020 data from Department of
Statistics, Singapore home page.

parse the downloaded data into R as a
tibble data.frame. Call the tibble
data.frame popdata.

The code chunk is:

Importing Attribute Data into R

popdata <- read_csv("data/aspatial/respopagesex

10 / 55

https://www.singstat.gov.sg/

You are required to prepare a data table with year
2020 values. The data table should include the
variables PA, SZ, YOUNG, ECONOMY ACTIVE, AGED,
TOTAL, DEPENDENCY.

YOUNG: age group 0 to 4 until age groyup 20 to
24,
ECONOMY ACTIVE: age group 25-29 until age
group 60-64,
AGED: age group 65 and above,
TOTAL: all age group, and
DEPENDENCY: the ratio between young and aged
against economy active group.

To fully appreciate the functions used in the code
chunk on the right, you are recommended to read the
reference guide of filter(), group_by(), mutate() and
select() functions of dplyr package and pivot_wider()
of tidyr package.

The code chunk is:

popdata2020 <- popdata %>%
 filter(Time == 2020) %>%
 group_by(PA, SZ, AG) %>%
 summarise(`POP` = sum(`Pop`)) %>%
 ungroup()%>%
 pivot_wider(names_from=AG,
 values_from=POP) %>%
 mutate(YOUNG = rowSums(.[3:6])
 +rowSums(.[12])) %>%
mutate(`ECONOMY ACTIVE` = rowSums(.[7:11])+
rowSums(.[13:15]))%>%
mutate(`AGED`=rowSums(.[16:21])) %>%
mutate(`TOTAL`=rowSums(.[3:21])) %>%
mutate(`DEPENDENCY` = (`YOUNG` + `AGED`)
/`ECONOMY ACTIVE`) %>%
 select(`PA`, `SZ`, `YOUNG`,
 `ECONOMY ACTIVE`, `AGED`,
 `TOTAL`, `DEPENDENCY`)

Data Preparation

11 / 55

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/index.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/index.html

Performing georelation join by using the
SUBZONE_N field of mpsz simple features
data.frame and SZ field of popdata2020
tibble data.frame as the unique identifiers.
Called the output data-frame as
mpszpop2020.

The code chunk is:

popdata2020 <- popdata2020 %>%
 mutate_at(.vars = vars(PA, SZ),
 .funs = funs(toupper)) %>%
 filter(ECONOMY ACTIVE > 0)
mpszpop2020 <- left_join(mpsz, popdata2020,
 by = c("SUBZONE_N" = "SZ"))

Things to learn from the code chunk above:

Extra step is required to convert the values in PA
and SZ fields to uppercase. This is because the
values of PA and SZ fields are made up of upper-
and lowercase on the other hand the SUBZONE_N
and PLN_AREA_N are in uppercase.
left_join() of dplyr package is used with mpsz
simple feature data.frame as the left data table is
to ensure that the output will be a simple
features data.frame.

Georelation Join

12 / 55

https://dplyr.tidyverse.org/reference/mutate-joins.html

Plotting functions of tmap
Two approaches can be used to prepare thematic map using tmap, they are:

Plotting a thematic map quickly by using qtm().
Plotting highly customisable thematic map by using tmap elements.

13 / 55

The easiest and quickest to draw a choropleth map
using tmap is using qtm(). It is concise and provides a
good default visualisation in many cases.

The code chunk below will draw a cartographic
standard choropleth map as shown below.

tmap_mode("plot")
qtm(mpszpop2020,
 fill = "DEPENDENCY")

Things to learn from the code chunk above:

tmap_mode() with "plot" option is used to
produce a static map. For interactive mode,
"view" option should be used.

fill argument is used to map the attribute (i.e.
DEPENDENCY)

Plotting a choropleth map quickly by using qtm()

14 / 55

tmap elements
tm_shape()

The first element to start with is tm_shape(), which specifies the shape object.

15 / 55

tmap elements
Base layers

Next, one, or a combination of the following drawing layers should be specified:

16 / 55

tmap element
Base layers

Each of these functions specifies the geometry, mapping, and scaling component of the
LGTM.
An aesthetic can take a constant value, a data variable name, or a vector consisting of
values or variable names.
If a data variable is provided, the scale is automatically configured according to the
values of this variable, but can be adjusted with several arguments. For instance, the
main scaling arguments for a color aesthetic are color palette, the preferred number of
classes, and a style to create classes.
Also, for each aesthetic, except for the text labels, a legend is automatically created.
If a vector of variable names is provided, small multiples are created, which will be
explained further below.

17 / 55

tmap elements
Derived layers

The supported derived layers are as follows:

18 / 55

tmap elements
Derived layers

Each aesthetic can take a constant value or a data variable name. For instance, tm_fill(col="blue") colors all
polygons blue, while tm_fill(col="var1"), where "var1" is the name of a data variable in the shape object,
creates a choropleth.

19 / 55

The basic building block of tmap is tm_shape()
followed by one or more layer elemments such as
tm_fill() and tm_polygons().

In the code chunk below, tm_shpae() is used to define
the input data (i.e mpsz_agmale2018) and
tm_polygons() is used draw the planning subzone
polygons

tm_shape(mpszpop2020) +
 tm_polygons()

Be warned: The "+" sign should be place at the end of
a code line and not at the front of a code line. But why the figure is not sharp?

Drawing a base map

20 / 55

To draw a choropleth map showing the geographical
distribution of a selected variable by planning
subzone, we just need to assign the target variable
such as DEPENDENCY to tm_polygons().

tm_shape(mpszpop2020)+
 tm_polygons("DEPENDENCY")

Things to learn from tm_polygons():

By default, 5 bins will be used.
The default data classification method used is
called "pretty".
The default colour scheme used is "YlOrRd" of
ColorBrewer. You will learn more about the color
palette later.
By default, Missing value will be shaded in gray.

Drawing a choropleth map using tm_polygons()

21 / 55

{r, echo=TRUE, eval=FALSE,
message=FALSE, warning=FALSE,
fig.retina=3}

The default dpi = 72. The default fig.retina = 2.
That means the dpi is 72 x 2 = 144

That means the dpi is 72 x 3 = 216

out.width = fig.width * dpi / fig.retina

Now it looks shaper

22 / 55

Actually, tm_polygons() is a wrapper of tm_fill() and
tm_border(). tm_fill() shades the polygons by using the
default colour scheme and tm_borders() adds the
borders of the shapefile onto the choropleth map.

The code chunk below draw a choropleth map by
using tm_fill() alone.

tm_shape(mpszpop2020)+
 tm_fill("DEPENDENCY")

Notice that the planning subzones are shared
according to the respective dependecy values

Drawing a choropleth map using tm_fill() and tm_border()*

23 / 55

To add the boundary of the planning subzones,
tm_borders will be used as shown in the code chunk
below.

tm_shape(mpszpop2020)+
 tm_fill("DEPENDENCY") +
 tm_borders(lwd = 0.1,
 alpha = 1)

Notice that light-gray border lines have been added
on the choropleth map.

lwd = border line width. The default is 1,
alpha = transparency number between 0 (totally
transparent) and 1 (not transparent). By default,
the alpha value of the col is used (normally 1),
col = border colour, and
lty = border line type. The default is "solid".

Drawing a choropleth map using tm_border()*

24 / 55

Most choropleth maps employ some method of data
classification. The point of classification is to take a
large number of observations and group them into
data ranges or classes.

tmap provides a total ten data classification methods,
namely: fixed, sd, equal, pretty (default), quantile,
kmeans, hclust, bclust, fisher, and jenks.

To define a data classification method, the style
argument of tm_fill() or tm_polygons() will be used.

The code chunk below shows a quantile data
classification with 8 classes are used.

tm_shape(mpszpop2020)+
 tm_fill("DEPENDENCY",
 n = 8,
 style = "quantile") +
 tm_borders(alpha = 0.5)

Data classification methods of tmap

25 / 55

Comparing Quantile and Equal Interval
In the code chunk below, quantile and equal data classification methods are used.

Notice that the distribution of quantile data classification method are more evenly distributed then equal data
classification method.

26 / 55

tmap supports colour ramps either defined by the
user or a set of predefined colour ramps from the
RColorBrewer package.

To change the colour, we assign the prefered colour
to palette argument of tm_fill() as shown in the code
chunk below.

tm_shape(mpszpop2020)+
 tm_fill("DEPENDENCY",
 n = 6,
 style = "quantile",
 palette = "Blues") +
 tm_borders(alpha = 0.5)

Notice that the choropleth map is shaded in blue.

Colour Scheme

27 / 55

To reverse the colour shading, add a "-" prefix.

tm_shape(mpszpop2020)+
 tm_fill("DEPENDENCY",
 style = "quantile",
 palette = "-Blues") +
 tm_borders(alpha = 0.5)

Notice that the colour scheme has been reversed.

More about colour

28 / 55

Map Layouts
Map layout refers to the combination of all map elements into a cohensive map. Map elements include among
others the objects to be mapped, the title, the scale bar, the compass, margins and aspects ratios, while the colour
settings and data classification methods covered in the previous section relate to the palette and break-points used
to affect how the map looks.

29 / 55

Map Legend
In tmap, several legend options are provided to change the placement, format and appearance of the legend.

tm_shape(mpszpop2020)+
 tm_fill("DEPENDENCY",
 style = "jenks",
 palette = "Blues",
 legend.hist = TRUE,
 legend.is.portrait = TRUE,
 legend.hist.z = 0.1) +
 tm_layout(main.title = "Distribution of Dependency Ratio by planning subzone \n(Jenks classificati
 main.title.position = "center",
 main.title.size = 1,
 legend.height = 0.45,
 legend.width = 0.35,
 legend.outside = FALSE,
 legend.position = c("right", "bottom"),
 frame = FALSE) +
 tm_borders(alpha = 0.5)

30 / 55

Map Legend
The output map

[1] "#E3EEF8" "#BFD8EC" "#7FB9DA" "#4090C5" "#1664AB"

31 / 55

tmap allows a wide variety of layout settings to be
changed. They can be called by using tmap_style().

The code chunk below shows the classic style is used.

tm_shape(mpszpop2020)+
 tm_fill("DEPENDENCY",
 style = "quantile",
 palette = "-Greens") +
 tm_borders(alpha = 0.5) +
 tmap_style("classic")

Map style

32 / 55

Cartographic Furniture
Beside map style, tmap also also provides arguments to draw other map furniture such as compass, scale bar and
grid lines.

In the code chunk below, tm_compass(), tm_scale_bar() and tm_grid() are used to add compass, scale bar and grid
lines onto the choropleth map.

tm_shape(mpszpop2020)+
 tm_fill("DEPENDENCY",
 style = "quantile",
 palette = "Blues",
 title = "No. of persons") +
 tm_layout(main.title = "Distribution of Dependency Ratio \nby planning subzone",
 main.title.position = "center",
 main.title.size = 1.2,
 legend.height = 0.45,
 legend.width = 0.35,
 frame = TRUE) +
 tm_borders(alpha = 0.5) +
 tm_compass(type="8star", size = 2) +
 tm_scale_bar(width = 0.15) +
 tm_grid(lwd = 0.1, alpha = 0.2) +
 tm_credits("Source: Planning Sub-zone boundary from Urban Redevelopment Authorithy (URA)\n and Pop
 position = c("left", "bottom")) 33 / 55

Cartographic Furniture
The output plot

To reset the default style, the code chunk use the code chunk below.
34 / 55

Drawing Small Multiple Choropleth Maps
Small multiple maps, also refered to facet maps, are composed of many maps arrange side-by-side, and sometimes
stacked vertically. Small multiple maps enable the visualisation of how spatial relationships change with respect to
another variable, such as time.

In tmap, small multiple maps can be plotted in three ways:

by assigning multiple values to at least one of the asthetic arguments,
by defining a group-by variable in tm_facets(), and
by creating multiple stand-alone maps with tmap_arrange().

35 / 55

In this example, small multiple choropleth maps are
created by defining ncols in tm_fill()

tm_shape(mpszpop2020)+
 tm_fill(c("YOUNG", "AGED"),
 style = "equal",
 palette = "Blues") +
 tm_layout(legend.position = c("right",
 "bottom")) +
 tm_borders(alpha = 0.5) +
 tmap_style("white")

By assigning multiple values to at least one of the aesthetic arguments

36 / 55

In this example, small multiple choropleth maps are
created by assigning multiple values to at least one of
the aesthetic arguments

tm_shape(mpszpop2020)+
 tm_polygons(c("DEPENDENCY","AGED"),
 style = c("equal", "quantile"),
 palette = list("Blues","Greens")) +
 tm_layout(legend.position = c("right",
 "bottom"))

By assigning multiple values to at least one of the aesthetic arguments

37 / 55

In this example, multiple small choropleth maps are
created by using tm_facets().

tm_shape(mpszpop2020) +
 tm_fill("DEPENDENCY",
 style = "quantile",
 palette = "Blues",
 thres.poly = 0) +
 tm_facets(by="REGION_N",
 free.coords=TRUE,
 drop.shapes=TRUE) +
 tm_layout(legend.show = FALSE,
 title.position = c("center",
 "center"),
 title.size = 20) +
 tm_borders(alpha = 0.5)

By defining a group-by variable in tm_facets()

38 / 55

In this example, multiple small choropleth maps are
created by creating multiple stand-alone maps with
tmap_arrange().

youngmap <- tm_shape(mpszpop2020)+
 tm_polygons("YOUNG",
 style = "quantile",
 palette = "Blues")

agedmap <- tm_shape(mpszpop2020)+
 tm_polygons("AGED",
 style = "quantile",
 palette = "Blues")

tmap_arrange(youngmap, agedmap, asp=1, ncol=2)

By creating multiple stand-alone maps with tmap_arrange()

39 / 55

Mappping Spatial Object Meeting a Selection Criterion
Instead of creating small multiple choropleth map, you can also use selection function to
map spatial objects meeting the selection criterion.

tm_shape(mpszpop2020[mpszpop2020$REGION_N=="CENTRAL REGION",]) +
 tm_fill("DEPENDENCY",
 style = "quantile",
 palette = "Blues",
 legend.hist = TRUE,
 legend.is.portrait = TRUE,
 legend.hist.z = 0.1) +
 tm_layout(legend.outside = TRUE,
 legend.height = 0.45,
 legend.width = 5.0,
 legend.position = c("right", "bottom"),
 frame = FALSE) +
 tm_borders(alpha = 0.5)

40 / 55

Mappping Spatial Object Meeting a Selection Criterion
The output choropleth maps.

[1] "#E3EEF8" "#BFD8EC" "#7FB9DA" "#4090C5" "#1664AB"
41 / 55

Limitation of Statistical Map: Maps lie!
Although both choropleth maps were created using the same variable (i.e. aged population) but the choropleth
maps produced look very different. This is because the choropleth maps were created using two different data
classification methods. For the choropleth map on the left, quantile classification method was used and for
choropleth on the right, equal interval classification method was used.

Challenge:

How to identify planning subzones with extreme high or low numbers of aged population?
42 / 55

Boxplot is one one the popular
Exploratory Data Analysis (EDA)
technique used to show the statistics
and distribution of data values.

The code chunk is:

ggplot(data=mpszpop2020,
 aes(x = "",
 y = AGED)) +
 geom_boxplot()

Despite its usefulness, boxplot is not able
to reveal the spatial distribution of these
outliers.

Visualising Extreme Values

43 / 55

Extreme Value Maps
Extreme value maps are variations of common choropleth maps where
the classification is designed to highlight extreme values at the lower and
upper end of the scale, with the goal of identifying outliers.

These maps were developed in the spirit of spatializing EDA, i.e., adding
spatial features to commonly used approaches in non-spatial EDA
(Anselin 1994).

44 / 55

Box map
Displaying summary statistics on a choropleth map by using the basic priciples of
boxplot.

In essence, a box map is an augmented quartile map, with an additional lower and
upper category. When there are lower outliers, then the starting point for the breaks is
the minimum value, and the second break is the lower fence. In contrast, when there are
no lower outliers, then the starting point for the breaks will be the lower fence, and the
second break is the minimum value (there will be no observations that fall in the interval
between the lower fence and the minimum value).

To create a box map, a custom breaks specification will be used. However, there is a
complication. The break points for the box map vary depending on whether lower or
upper outliers are present.

45 / 55

Why Writing Functions?
Writing a function has three big advantages over using copy-and-paste:

You can give a function an evocative name that makes your code easier to
understand.
As requirements change, you only need to update code in one place,
instead of many.
You eliminate the chance of making incidental mistakes when you copy
and paste (i.e. updating a variable name in one place, but not in another).

Source: Chapter 19: Functions of R for Data Science.

46 / 55

https://r4ds.had.co.nz/functions.html#functions

boxbreaks <- function(v,mult=1.5) {
 qv <- unname(quantile(v))
 iqr <- qv[4] - qv[2]
 upfence <- qv[4] + mult * iqr
 lofence <- qv[2] - mult * iqr
 # initialize break points vector
 bb <- vector(mode="numeric",length=7)
 # logic for lower and upper fences
 if (lofence < qv[1]) { # no lower outliers
 bb[1] <- lofence
 bb[2] <- floor(qv[1])
 } else {
 bb[2] <- lofence
 bb[1] <- qv[1]
 }
 if (upfence > qv[5]) { # no upper outliers
 bb[7] <- upfence
 bb[6] <- ceiling(qv[5])
 } else {
 bb[6] <- upfence
 bb[7] <- qv[5]
 }
 bb[3:5] <- qv[2:4]
 return(bb)

The code chunk on the left is an R function that
creating break points for a box map.

arguments:
v: vector with observations
mult: multiplier for IQR (default 1.5)

returns:
bb: vector with 7 break points compute
quartile and fences

Creating the boxbreaks function

47 / 55

get.var <- function(vname,df) {
 v <- df[vname] %>% st_set_geometry(NULL)
 v <- unname(v[,1])
 return(v)
}

The code chunk on the left is an R function to extract
a variable as a vector out of an sf data frame.

arguments:
vname: variable name (as character, in
quotes)
df: name of sf data frame

returns:
v: vector with values (without a column
name)

Creating the get.var function

48 / 55

Let's test the newly created function

var <- get.var("AGED", mpszpop2020)
boxbreaks(var)

Let's exclude AGED = NA by using the code
chunk below.

mpszpop2020a <- mpszpop2020 %>%
 filter(AGED>=0)
var <- get.var("AGED", mpszpop2020a)
boxbreaks(var)

[1] -4330 0 515 2080 3745 8590 20240

Test drive the newly created function

49 / 55

boxmap <- function(vnam, df,
 legtitle=NA,
 mtitle="Box Map",
 mult=1.5){
 var <- get.var(vnam,df)
 bb <- boxbreaks(var)
 tm_shape(df) +
 tm_fill(vnam,title=legtitle,
 breaks=bb,
 palette="-RdBu",
 labels = c("lower outlier",
 "< 25%",
 "25% - 50%",
 "50% - 75%",
 "> 75%",
 "upper outlier")) +
 tm_borders() +
 tm_layout(title = mtitle,
 title.position = c("right",
 "bottom"))
}

The code chunk on the left is an R function to create a
box map.

arguments:
vnam: variable name (as character, in
quotes)
df: simple features polygon layer
legtitle: legend title
mtitle: map title
mult: multiplier for IQR

returns:
a tmap-element (plots a map)

Boxmap function

50 / 55

boxmap("ECONOMY ACTIVE", mpszpop2020a) The box map reveals that there are six upper
outliers (i.e. planning subzone with extremely
high numbers of aged population)

Four of the upper outliers are located at the
eastern region and they are closed to each
others.

There is no lower outlier.

The box map of AGED population

But why some planning subzones were eaten by rats? Can you fix it?

51 / 55

In much of our readings we have now seen
the importance to map rates rather than
counts of things, and that is for the simple
reason that population is not equally
distributed in space. That means that if we
do not account for how many people are
somewhere, we end up mapping
population size rather than our topic of
interest.

Choropleth Map for Rates

52 / 55

First, compute the raw rate by using the code
chunk below:

mpszpop2020a <- mpszpop2020 %>%
 mutate(`AGED%` = (`AGED`
/`TOTAL`)*100) %>%
 filter(`AGED%` >= 0)

Next, the boxmap function will be used to plot the
raw rate map as shown in the code chunk below.

var <- get.var("AGED%", mpszpop2020a)
boxbreaks(var)
boxmap("AGED%",mpszpop2020a)

[1] -2.17276 0.00000 11.28169 16.48199 20.25132 3

Raw rate map

53 / 55

Comparing Absolute and Rate Choropleth Maps

54 / 55

All About tmap package
tmap: Thematic Maps in R

Development site

tmap User Guide

tmap: get started!

tmap: changes in version 2.0

tmap: creating thematic maps in a flexible way
(useR!2015)

Exploring and presenting maps with tmap
(useR!2017)

References

55 / 55

https://www.jstatsoft.org/article/view/v084i06
https://github.com/mtennekes/tmap
https://cran.r-project.org/web/packages/tmap/index.html
https://cran.r-project.org/web/packages/tmap/vignettes/tmap-getstarted.html
https://cran.r-project.org/web/packages/tmap/vignettes/tmap-changes-v2.html
http://von-tijn.nl/tijn/research/presentations/tmap_user2015.pdf
http://von-tijn.nl/tijn/research/presentations/tmap_user2017.pdf

