Topic 4: Spatial Point Patterns Analysis

Dr. Kam Tin Seong
Assoc. Professor of Information Systems (Practice)

School of Computing and Information Systems,
Singapore Management University

2020-5-5 (updated: 2021-05-17)



Content

e Introducing Spatial Point Patterns
o The basic concepts of spatial point patterns
o 1st Order versus 2nd Order
o Spatial Point Patterns in real world

e 1st Order Spatial Point Patterns Analysis
o Quadrat analysis
o Kernel density estimation

e 2nd Order Spatial Point Patterns Analysis
o Nearest Neighbour Index

G-function

F-function

K-function

L-function

2 /55



What is Spatial Point Patterns

¢ Points as Events
e Mapped pattern

o Not a sample
o Selection bias

e Events are mapped, but non-events are not
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Spatial Point Patterns in Real World

e Distribution of dieses such as dengue fever.
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Spatial Point Patterns in Real World

e Distribution of car collisions.

>

5/55



Spatial Point Patterns in Real World

e Distribution of crime incidents.
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Spatial Point Patterns in Real World

e Distribution of public services such as education institutions.
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Spatial Point Patterns in Real World

e [ocations of the different channel stores.
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Spatial Point Patterns in Real World

e Distribution of social media data such as tweets.

€ - C @ 3ideatransitivity.appspot.com/viz

waal

- jeannettechua

Retrieving tweets...

Tweets last retrieved at: Treets retrieved at 12:27 AM

"€ Sucks to be me. Just let me sleep foreve@ N
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Real World Question

e Location only
o are points randomly located or patterned
e Location and value

o marked point pattern
o is combination of location and value random or patterned

e What is the underlying process?
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Points on a Plane

e (lassic point pattern analysis

© points on an isotropic plane
o no effect of translation and rotation
o classic examples: tree seedlings, rocks, etc

e Distance

o straight line only
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Real world spatial point patterns

¢ Is this a random distribution?
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Real world spatial point patterns

¢ Is this a random distribution?
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Spatial Point Patterns Analysis

e Point pattern analysis (PPA) is the study of the spatial arrangements of points in (usually

2-dimensional) space.
e The simplest formulation is a set X = {x € D} where D, which can be called the study

region, is a subset of Rn, a n-dimensional Euclidean space.
* A fundamental problem of PPA is inferring whether a given arrangement is merely

random or the result of some process.
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Spatial Point Patterns Analysis Techniques

e First-order vs Second-order Analysis of spatial point patterns.

2 order
efrect

Observations
vary from plac,e
‘o Place due to
interaction
effects between
observations

Bt order
effect

Observations

vary from Place
to place due to
changes in the
mder‘lyhg

preperty

EE Mpe :Qoaq &

Reference: 11.4 First and second order effects of Intro to GIS and Spatial Analysis (https://mgimond.github.io/Spatial/point-pattern-analysis.html#first-and-second-

order-effects)
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https://mgimond.github.io/Spatial/point-pattern-analysis.html#first-and-second-order-effects

First-order Spatial Point Patterns Analysis Techniques

e Density-based

o Quadrat analysis,
o Kernel density estimation

e Distance-based

o Nearest Neighbour Index
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Basic concept of density-based measures

Global density
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Quadrat Analysis — Step 1

e Divide the study area into subregion of equal size,
o often squares, but don’t have to be.

EOL ORI
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Quadrat Analysis — Step 2

e Count the frequency of events in each region.

3 3 3 i, 3 1 0
number

4 6 6 4 2 1 1

4 4 3 3 2 2 0
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Intensity
A

7.=n/A where n =number of events and A = 4 is area of each quadrat

Quadrat Analysis — Step 3

e (Calculate the intensity of events in each region.

15 A9 A9 A9 19 29 0
1 1.5 15 1 ks 25 25
1 1 A3 15 5 R+ 0
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Quadrat Analysis — Step 4

e Calculate the quadrat statistics and perform CSR test.

3 i 2 2 0 0
5 0 3 7 0 0
2 1 2 2 10 10
1 3 7 7) 0 0
3 1 2 2 0 0
Quadrat # of Points Quadrat  # of Points Quadrat # of Points
# Per Quadrat  x*2 # Per Quadrat x*2 # Per Quadrat x*2
1 3 9 1 2 4 1 0 0
RANDOM 3) 1 1 2 2 4 2 0 0
3 5 25 3 ) 4 4 0 0
4 0 0 4 2 4 4 0 0
5 2 4 5 5 4 5 10 100
6 1 1 6 2 4 6 10 100
7 1 1 7 z 4 7 0 0
8 3 9 8 2 4 8 0 0
9 8 9 9 2 4 g 0 0
10 1 1 10 2 4 10 0 0
20 60 20 40 20 200
UNIFORM/ Variance 2222 Variance 0.000 Varance 17.778
DISPERSED Mean 2.000 Mean 2.000 Mean 2.000
Var/Mean 1111 Var/Mean 0.000 Var/Mean 8.889
N = number of quadrats =10 To test for CSR, calculate the test statistic
for quadrat (32):
9 s
) Z-\ —[(ZJC) / N] » m =# of quadrats
Variance = (m — l)S 2 = i
N-1 - s* = observed variance
) X X = observed mean
: . variance
CLUSTERED Variance mean ratio=——————
mean Compare to y2 distribution with m-I

> degrees of freedom
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Quadrat Analysis — Variance-Mean Ratio (VMR)

e For an uniform distribution, the variance is zero,
o therefore, we expect a variance-mean ratio close to 0.

* For a random distribution, the variance and mean are the same,
o therefore, we expect a variance-mean ratio close to 1.

* For a cluster distribution, the variance is relatively large,

o therefore, we expect a variance-mean ratio greater than 1.
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Complete Spatial Randomness (CSR)

e CSR/IRP satisfy two conditions: points have equal
Prok?alailiw of appearing
o Any event has equal probability of anywhere
being in any location, a 1st order @
@
effect. a
@
o The location of one event is s
independent of the location of e ¢
® 9 ®
another event, a 2nd order effect. e
Reference: Source: Chapter 12 Hypothesis testing of Intro to GIS and Spatial & e

Analysis (https://mgimond.github.io/Spatial/hypothesis-testing.html)

Poir1+s dont infFluence
each other’s location
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https://mgimond.github.io/Spatial/hypothesis-testing.html

Quandrat Analysis: The interpretation

Chi-squared test of CSR using quadrat counts
Pearson X2 statistic

data: sp_ppp
X2 = 245.23, df = 23, p-value < 2.2e-16

alternative hypothesis: two.sided

Quadrats: 6 by 4 grid of tiles

The Chi-squared statistic is large and the p-value is smaller than
0.05 => Reject the null hypothesis that the point patterns are

randomly distributed.

24 [ 55



Weaknesses of quadrat analysis

e [tis sensitive to the quadrat size.

o If the quadrat size is too small, they
may contain only a couple of points,
and

o If the quadrat size is too large, they
may contain too many points.

e [tis a measure of dispersion rather
than a measure of pattern.

e It results in a single measure for the
entire distribution, so variation within
the region are not recognised.
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Distance-based: Nearest Neighbour Index

What is Nearest Neighbour?

Direct distance from a point to its nearest neighbour.

mmmm | ) meters

Nearest
Event X y neighbor r_.
1 6622 3258 10 25.59
2 2252 2239 4 15.64
3 3101 8121 5 21.14
4 9.47 31.02 8 24.81
5 3078 60.10 3 9.00
6 7521 5893 10 21.14
£ 185 7.68 12 21.94
8 823 3593 4 9.00
9 98.73 4253 6 21.94
10 89.78 4253 6 21.94
11 65.19 92.08 6 34.63
12 54.46 8.48 7 24.81
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Nearest Neighbour Index

The Nearest Neighbour Index is expressed as the ratio of the Observed Mean Distance to
the Expected Mean Distance.

NN Index: The Nearest Neighbor Index (Uncorrected)

NNT =2
E(d)

Avg. Dist.: Average Nearest Neighbor Distance

H

Z d,

(7: i=1

n

Exp. Avg.: Expected Average Nearest Neighbor Distance (Uncorrected)

E(d)=0.5 o

n
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Calculating Nearest Neighbour

ndex

O60 0 ©06° o

Nearest
Point Neighbor Distance
1 2
2 3
3 2
4 5
5 4
6 5
7 6
8 9
9 10
10 9

Mean distance 0.1
Area of

RS X8 CLUSTERED

0.1
0.1
0.1
0.1
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22
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Nearest
Point Neighbor Distance
1 2 1
2 3 0.1
3 2 0.1
4 5 1
5 4 1
6 5
7 6 2.7
8 10 1
9 10 1
10 9 1
10.9
Mean distance1.09
Area of
Region 50
Density 0.2
Expected
Mean 1.118034
NNI 0.974926
Z = -0.1515

Region 50
Density 0.2
Expected
Mean 1.118034
NNI 0.089443
Z = 5.508

Region 50

Density 0.2

Expected

Mean 1.118034
NNI 1.96774
Z

= 5.855 4.7
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Interpreting Nearest Neighbour Index

The expected distance is the average distance between neighbours in a hypothetical

random distribution.

e If the index is less than 1, the pattern exhibits clustering,

e If the index is equal to 1, the patterns exhibits random, and

e If the index is greater than 1, the trend is toward dispersion or competition.

*e

L ]

Disperged -ﬁ- Clusterad
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The test statistics

* Null Hypothesis: Points are randomly distributed

e Test statistics:

d—E(d)

7 =
Std. error

e Reject the null hypothesis if the z-score is large and p-value is smaller than the alpha
value.
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Interpreting Nearest Neighbour Index

Clark-Evans test
No edge correction
Monte Carlo test based on 999 simulations of CSR

with fixed n
data: childcareSG_ppp

R = 0.545, p-value = 0.002
alternative hypothesis: two-sided

The p-value is smaller than 0.05 => Reject the null hypothesis that the point patterns are
randomly distributed.

31/55



G function

The formula

G(r) = #[’;nin (s;) <7r]

n
_ #pomtpairs wherer,; <r

111

_#of pomtsin studyarea

Nearest
Event X y neighbor r_._
1 66.22 3254 10 25.59
2 2252 22.39 - 15.64
3 3101 8121 5 21.14
4 9.47 31.02 8 24.81
5 30.78 60.10 3 9.00
6 7521 5893 10 21.14
7 79.26 7.68 12 21.94
8 8.23 39.93 4 9.00
9 98.73 4253 6 21.94
10 89.78 42.53 6 21.94
11 65.19 92.08 6 34.63
12 54.46 8.48 7 24.81

G(r)

0.75

0.25

g-function

/

0

9 15 22 25

Distance (r)

::::::
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Interpretation of G-function

The shape of G-function tells us the way
the events are spaced in a point pattern.

e (Clustered = G increases rapidly at short
distance.

e Evenness = G increases slowly up to
distance where most events spaced,
then increases rapidly.

0.73

0:25 4

0

9

15 22 15

Distance (r)

26

35
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How do we tell if G is significant?

e The significant of any departure from
CSR (either cluster or regularity) can be

evaluated using simulated “confidence
envelopes”

radius (r)
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Monte Carlo simulation test of CSR

Perform m independent simulation of n events (i.e. 999) in the study region.

For each simulated point pattern, estimate G(r) and use the maximum (95th) and
minimum (5th) of these functions for the simulated patterns to define an upper and
lower simulation envelope.

If the estimated G(r) lies above the upper envelope or below the lower envelope, the
estimated G(r) is statistically significant.
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The significant test of G-function

G(r)

o
o

04

03

0.2

0.1

0.0

e et o e e T S T T T o o T L e e s e e o e o e

Clustered pattern (above the envelopes)

Below envelopes = regular pattern
In envelopes = homogeneous
distribution (CSR)
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F function

e Select a sample of point locations anywhere in the study region at random

o Determine minimum distance from each point to any event in the study area.

* Three steps:
o Randomly select m points (p1, p2, ....., pn),

o Calculate dmin(pi,s) as the minimum distance from location pi to any event in the
point patterns, and

o Calculate F(d).
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The F function formula

o
s | O meters

® = randomly chosen point

® = event in study area
—f -
min

F(d) =

_ #of pomtpairs where

0 [ [ ! [ |
0 5 |10 |5 20 25

Distance (r)

[dnﬁn (pr ? S) < d]

<T

rm:'m

#sample points
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Interpretation of F-function

e Clustered = F(r) rises slowly at first, but more rapidly at longer distances.

e Evenness = F(r) rises rapidly at first, then slowly at longer distances.
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The significant test of F-function

L
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L]
= | Clustered pattern (below the envelopes)
=
Y Above envelopes = regular pattern
S | s Within envelopes = CSR
o |
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Comparison between G and F

G(r)

00 02 04 06 08 10

G_CK.csr

- éobs(r)
===~ Gmeolr)

- ém‘(f )

F(r)
00 02 04 06 08 10

F_CK.csr

T FAobs(r)
woe=  Frigall)
- FAM(")
- FAro(")
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Ripley’s K function (Ripley, 1981)
e Limitation of nearest neighbor distance method is that it uses only nearest distance
o Considers only the shortest scales of variation.
e K function uses more points

o Provides an estimate of spatial dependence over a wider range of scales.
o Based on all the distances between events in the study area.
o Assumes isotropy over the region
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Calculating the K function

Construct a circle of radius h around
each point event(i).

Count the number of other events (j)
that fall inside this circle.

Repeat these two steps for all points (i)
and sum results.

Increment h by a small amount and
repeat the calculation.

ylest

2 points within 0.20 units
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K function

The formula:

dummy variable

(R lifd;<h
bk e ] d 0 otherwise
> R h ( rj)
K(h) == A
n e wW.. edge correction |
J I the proportion of circumference of circle
/ (centered on point i, containing point j)
number of points =1 if whole circle in the study area
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The K function complete spatial randomness test

e K(h) can be plotted against different values of h.
e But what should K look like for no spatial dependence?
e Consider what K(h) should look like for a random point process (CSR)

o The probability of an event at any pointin R is independent of what other events
have occurred and equally likely anywhere in R
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Interpreting the K function complete spatial randomness test

K_tm.csr

Under the assumption of CSR, the
expected number of events within distance
h of an event is:

Ge+06
|

N
— Koplr)=r

B theo(r}_r

4e+06
I

R}ir}—r
Kior)-r

Kid)r
|

K(h) = mh?

2e+06
1

where
h = the radius of the circle

Oe+00
|

Compare K(h) to mh"2

e K(h) <mh"2 if point pattern is regular

e K(h) > mh"2 if point pattern is clustered e Above the envelop = significant cluster

pattern
e Below the envelop = significant reqular
e Inside the envelop = CSR
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The L function (Besag 1977)

In practice, K function will be normalised to obtained a benchmark of zero.

The formula:

L) = /KO
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Interpreting the L function complete spatial randomness test

* When an observed L value is greater than its * The grey zone indicates the confident envelop
corresponding L(theo)(i.e. red break line) value (i.e. 95%).
for a particular distance and above the upper

confidence envelop, spatial clustering for that
distance is statistically significant (e.g. distance

1500

- Lobs(r)

beyondC). Linol1)

* When an observed L value is greater than its thi?;
okl

corresponding L(theo) value for a particular
distance and lower than the upper confidence
envelop, spatial clustering for that distance is
statistically NOT significant (e.qg. distance
between B and Q).

* When an observed L value is smaller than its
corresponding L(theo) value for a particular
distance and beyond the lower confidence
envelop, spatial dispersion for that distance is
statistically significant.

* When an observed L value is smaller than its ©

L(r)
1000

500
|

corresponding L(theo) value for a particular
distance and within the lower confidence
envelop, spatial dispersion for that distance is



The L function (Besag 1977)

The modified L function

=

L{‘,‘I _ \'KI\;] _,

—
Fi |

e L(r)>0 indicates that the observed
distribution is geographically
concentrated.

e L(r)<0implies dispersion.

e L(r)=0 indicates complete spatial
randomness (CRS).

Lir)=r

800 1000

0 200 400 600

-200

Lr

1000

2000

3000

4000

2000
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Kernel density estimation (Silverman 1986)

* A method to compute the intensity of a point distribution.

* The general formula:

r::r‘ (s}

>

L.1?

k[-.i

%

y

e Graphically

typical kerne|
events; k, \

bandwidth T,

/ location
( 7 T
Study location kernel
region s, Ky
R bandwicth T,

* Creating a smooth surface for each kernel
* Surface value highest in the center (point location) and
diminishes with distance...reaches 0 at radius distance
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Kernel density estimation: simple computation

y'aX|§ o
rea=pl r
“31e” 15§ A% 6 points/7.06m’
' 2
© =0,8488 p/m
~— "Be®L1
@ ® y-ixis
o0 el g <
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The kernel functions

Uniform

Triangular

Quartic

Gaussian

Each kernel type has a different equation

for the function k, for example:

Triangular:

Quartic:

Normal:

f=1-|2
7
2
-2(1-8)
T 4
h?
k= : e
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Fixed bandwidth

Wij

e Might produce large estimate variances Weighting function
where data are sparse, while mask
subtle local variations where data are

dense.
e In extreme condition, fixed schemes i & \

might not be able to calibrate in local

areas where data are too sparse to -

regression point

satisfy the calibration requirements ® data point
(observations must be more than Bandw‘dth
parameters).
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Adaptive Bandwidth

Adaptive schemes adjust itself according to
the density of data:

e Shorter bandwidths where data are
dense and longer where sparse.

* Finding nearest neighbors are one of
the often used approaches.

Weighting function

A
<

Vv

Bandwidth
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