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What is Spatial Point Patterns
Points as Events

Mapped pattern

Not a sample
Selection bias

Events are mapped, but non-events are not
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Spatial Point Patterns in Real World
Distribution of dieses such as dengue fever.
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Spatial Point Patterns in Real World
Distribution of car collisions.
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Spatial Point Patterns in Real World
Distribution of crime incidents.
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Spatial Point Patterns in Real World
Distribution of public services such as education institutions.
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Spatial Point Patterns in Real World
Locations of the different channel stores.
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Spatial Point Patterns in Real World
Distribution of social media data such as tweets.
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Real World Question
Location only

are points randomly located or patterned

Location and value

marked point pattern
is combination of location and value random or patterned

What is the underlying process?
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Points on a Plane
Classic point pattern analysis

points on an isotropic plane
no effect of translation and rotation
classic examples: tree seedlings, rocks, etc

Distance

straight line only
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Real world spatial point patterns
Is this a random distribution?
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Real world spatial point patterns
Is this a random distribution?
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Spatial Point Patterns Analysis
Point pattern analysis (PPA) is the study of the spatial arrangements of points in (usually
2-dimensional) space.
The simplest formulation is a set X = {x ∈ D} where D, which can be called the study
region, is a subset of Rn, a n-dimensional Euclidean space.
A fundamental problem of PPA is inferring whether a given arrangement is merely
random or the result of some process.
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Spatial Point Patterns Analysis Techniques
First-order vs Second-order Analysis of spatial point patterns.

Reference: 11.4 First and second order effects of Intro to GIS and Spatial Analysis (https://mgimond.github.io/Spatial/point-pattern-analysis.html#first-and-second-

order-effects)
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First-order Spatial Point Patterns Analysis Techniques
Density-based

Quadrat analysis,
Kernel density estimation

Distance-based

Nearest Neighbour Index
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Basic concept of density-based measures
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Quadrat Analysis – Step 1
Divide the study area into subregion of equal size,

often squares, but don’t have to be.
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Quadrat Analysis – Step 2
Count the frequency of events in each region.
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Quadrat Analysis – Step 3
Calculate the intensity of events in each region.
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Quadrat Analysis – Step 4
Calculate the quadrat statistics and perform CSR test.
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Quadrat Analysis – Variance-Mean Ratio (VMR)
For an uniform distribution, the variance is zero,

therefore, we expect a variance-mean ratio close to 0.

For a random distribution, the variance and mean are the same,

therefore, we expect a variance-mean ratio close to 1.

For a cluster distribution, the variance is relatively large,

therefore, we expect a variance-mean ratio greater than 1.
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CSR/IRP satisfy two conditions:

Any event has equal probability of
being in any location, a 1st order
effect.

The location of one event is
independent of the location of
another event, a 2nd order effect.

Reference: Source: Chapter 12 Hypothesis testing of Intro to GIS and Spatial
Analysis (https://mgimond.github.io/Spatial/hypothesis-testing.html)

Complete Spatial Randomness (CSR)
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Quandrat Analysis: The interpretation
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It is sensitive to the quadrat size.

If the quadrat size is too small, they
may contain only a couple of points,
and
If the quadrat size is too large, they
may contain too many points.

It is a measure of dispersion rather
than a measure of pattern.

It results in a single measure for the
entire distribution, so variation within
the region are not recognised.

Weaknesses of quadrat analysis
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Distance-based: Nearest Neighbour Index
What is Nearest Neighbour?
Direct distance from a point to its nearest neighbour.
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Nearest Neighbour Index
The Nearest Neighbour Index is expressed as the ratio of the Observed Mean Distance to
the Expected Mean Distance.
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Calculating Nearest Neighbour Index
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Interpreting Nearest Neighbour Index
The expected distance is the average distance between neighbours in a hypothetical
random distribution.

If the index is less than 1, the pattern exhibits clustering,
If the index is equal to 1, the patterns exhibits random, and
If the index is greater than 1, the trend is toward dispersion or competition.
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The test statistics
Null Hypothesis: Points are randomly distributed

Test statistics:

Reject the null hypothesis if the z-score is large and p-value is smaller than the alpha
value.
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Interpreting Nearest Neighbour Index

The p-value is smaller than 0.05 => Reject the null hypothesis that the point patterns are
randomly distributed.
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The formula

G function
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The shape of G-function tells us the way
the events are spaced in a point pattern.

Clustered = G increases rapidly at short
distance.

Evenness = G increases slowly up to
distance where most events spaced,
then increases rapidly.

Interpretation of G-function
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The significant of any departure from
CSR (either cluster or regularity) can be
evaluated using simulated “confidence
envelopes”

How do we tell if G is significant?
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Monte Carlo simulation test of CSR
Perform m independent simulation of n events (i.e. 999) in the study region.

For each simulated point pattern, estimate G(r) and use the maximum (95th) and
minimum (5th) of these functions for the simulated patterns to define an upper and
lower simulation envelope.

If the estimated G(r) lies above the upper envelope or below the lower envelope, the
estimated G(r) is statistically significant.
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The significant test of G-function
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F function
Select a sample of point locations anywhere in the study region at random

Determine minimum distance from each point to any event in the study area.

Three steps:

Randomly select m points (p1, p2, ….., pn),

Calculate dmin(pi,s) as the minimum distance from location pi to any event in the
point patterns, and

Calculate F(d).
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The F function formula
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Interpretation of F-function
Clustered = F(r) rises slowly at first, but more rapidly at longer distances.

Evenness = F(r) rises rapidly at first, then slowly at longer distances.
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The significant test of F-function
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Comparison between G and F
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Ripley’s K function (Ripley, 1981)
Limitation of nearest neighbor distance method is that it uses only nearest distance

Considers only the shortest scales of variation.

K function uses more points

Provides an estimate of spatial dependence over a wider range of scales.
Based on all the distances between events in the study area.
Assumes isotropy over the region
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Construct a circle of radius h around
each point event(i).

Count the number of other events (j)
that fall inside this circle.

Repeat these two steps for all points (i)
and sum results.

Increment h by a small amount and
repeat the calculation.

Calculating the K function
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K function
The formula:
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The K function complete spatial randomness test
K(h) can be plotted against different values of h.

But what should K look like for no spatial dependence?

Consider what K(h) should look like for a random point process (CSR)

The probability of an event at any point in R is independent of what other events
have occurred and equally likely anywhere in R
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Under the assumption of CSR, the
expected number of events within distance
h of an event is:

Compare K(h) to 𝜋ℎ^2

K(h) < 𝜋ℎ^2 if point pattern is regular
K(h) > 𝜋ℎ^2 if point pattern is clustered Above the envelop = significant cluster

pattern
Below the envelop = significant regular
Inside the envelop = CSR

Interpreting the K function complete spatial randomness test
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The L function (Besag 1977)
In practice, K function will be normalised to obtained a benchmark of zero.

The formula:
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When an observed L value is greater than its
corresponding L(theo)(i.e. red break line) value
for a particular distance and above the upper
confidence envelop, spatial clustering for that
distance is statistically significant (e.g. distance
beyond C).
When an observed L value is greater than its
corresponding L(theo) value for a particular
distance and lower than the upper confidence
envelop, spatial clustering for that distance is
statistically NOT significant (e.g. distance
between B and C).
When an observed L value is smaller than its
corresponding L(theo) value for a particular
distance and beyond the lower confidence
envelop, spatial dispersion for that distance is
statistically significant.
When an observed L value is smaller than its
corresponding L(theo) value for a particular
distance and within the lower confidence
envelop, spatial dispersion for that distance is

The grey zone indicates the confident envelop
(i.e. 95%).

Interpreting the L function complete spatial randomness test
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The modified L function

L(r)>0 indicates that the observed
distribution is geographically
concentrated.

L(r)<0 implies dispersion.

L(r)=0 indicates complete spatial
randomness (CRS).

The L function (Besag 1977)
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The general formula: Graphically

Kernel density estimation (Silverman 1986)
A method to compute the intensity of a point distribution.
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Kernel density estimation: simple computation
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The kernel functions

52 / 55



Might produce large estimate variances
where data are sparse, while mask
subtle local variations where data are
dense.

In extreme condition, fixed schemes
might not be able to calibrate in local
areas where data are too sparse to
satisfy the calibration requirements
(observations must be more than
parameters).

Fixed bandwidth
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Adaptive schemes adjust itself according to
the density of data:

Shorter bandwidths where data are
dense and longer where sparse.

Finding nearest neighbors are one of
the often used approaches.

Adaptive Bandwidth
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