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Motivation
Real world geography are heterogeneous and anisotropy.
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What is Network Constrained events
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Alongside-network relations
(a) an access point (the black circle) of a polygon to a network (the horizontal line
segment),
(b) a boundary line segment of a polygon shared with a network (the bold line segment)
(c) an intersection point of two networks (the black circles),
(d) a network intersecting an area (the bold line segment).
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A traffic accident events at downtown
area.


Distribution of Airbnb listing at Central
region.


Real world network constrained events
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Examples of real world questions
Typical network constrained events questionsare as follows:

How can we obtain the catchment areas of parking lots in a downtown area including
one-way streets, assuming that drivers access their nearest parking lots?
Do coffee outlets tend to stand side-by-side alongside streets in a downtown area?
Do Airbnb listings tend to locate near to MRT stations?
Is the roadside retail rental price of a street segment similar to those of the adjacent
street segments?
How can we locate clusters of childcare centres within HDB towns?
How can we estimate the density of traffic accidents and street crimes incidence, and
how can we identify locations where the densities of those occurrence are high, referred
to as black spots and hot spots?
How can we spatially interpolate an unknown PM2.5 density at an arbitrary point on a
road using known PM2.5 densities at observation points at CBD?
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Why is it important to consider the underlying
geography?

With reference to (a), we will conclude that the spatial event is nonrandomly distributed
points on a bounded plane,
By constraining the points on a network, (b) reveals a randomly distributed patterns.
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Kernel function of the Kernel Density
estimation

Shortest Path Tree: The grid point and
the activities are projected on the
nearest edge.

Planar KDE versus Network Constraied KDE (NetKDE)
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NetKDE algorithm: Basic step
To perform a NKDE, the events must be snapped on the network. The snapped events
are shown here in green.

Reference: Network Kernel Density Estimate
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https://cran.r-project.org/web/packages/spNetwork/vignettes/NKDE.html


The mass of each event can be seen as a
third dimension and is evaluated by a
selected kernel function (K) within a
specified bandwidth. The kernel function
must satisfy the following conditions:

The total mass of an event is 1, and is
spread according to the function K within
the bandwidth distance.

We can see that the “influence” of each
point is limited within the bandwidth and
decreases when we move away from the
event.

NetKDE: The kernel function

Reference: Network Kernel Density Estimate
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https://cran.r-project.org/web/packages/spNetwork/vignettes/NKDE.html


In the figure below, 3 sampling points (s1,
s2 and s3) are added in blue.

The NetKDE formula can be defined as
follow:

More than one point

Reference: Network Kernel Density Estimate
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https://cran.r-project.org/web/packages/spNetwork/vignettes/NKDE.html


The general formula of NetKDE is defined
as:

with dsi the density estimated at the
sample point si, bw the bandwidth and ej
an event.

The proposed kernel functions in the
spNetwork package are:

The general formula of NetKDE

Reference: Network Kernel Density Estimate
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https://cran.r-project.org/web/packages/spNetwork/vignettes/NKDE.html


The Simple Method
The simple method was proposed by Xie and Yan (2008). They defined the NetKDE with the
following formula:

Reference: Network Kernel Density Estimate
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https://cran.r-project.org/web/packages/spNetwork/vignettes/NKDE.html


The algorithm is proposed by Sugihara,
Satoh, and Okabe (2010). It is easily
presented visually below:

Discontinuous NetKDE

Reference: Network Kernel Density Estimate
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https://cran.r-project.org/web/packages/spNetwork/vignettes/NKDE.html


The continuous NKDE merges the best of
the two worlds:

it adjusts the values of the NetKDE at
intersections to ensure that it integrates to 1 on
its domain, and
applies a backward correction to force the density
values to be continuous.

This process is accomplished by a recursive
function. It is more time consuming, so it
might be necessary to stop it when the
recursion is too deep.

Reference: Network Kernel Density Estimate

Continuous NetKDE
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https://cran.r-project.org/web/packages/spNetwork/vignettes/NKDE.html


Adaptive bandwidth NetKDE

Reference: Network Kernel Density Estimate 17 / 24

https://cran.r-project.org/web/packages/spNetwork/vignettes/NKDE.html


Planar K-function versus Network K-function
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Typical Network K-function question
Ho: The observed spatial point events (i.e airbnb listings, coffee outlets, traffic
accident locations etc) are uniformly
distributed over a street network in a study area.

The assumption of the binomial point process implies the hypothesis that objects
represented by P (say, airbnb listings) are uniformly and independently distributed over
the street network Lp.

If this hypothesis is rejected, we may infer that the
spatial point events are spatially
interacting and dependent on each other; as a result, they may form nonuniform
patterns.
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Spatial Point Patterns on network
In general, there are two types of nonuniform spatial point patterns on network, they are:

clustering whereby the spatial point events tend to be close together (such as in Figure
a), and
repelling (also know as regular) whereby the spatial point event tend to keep away from
each other (such as in Figure b).
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The Network K-function
Under the assumption of the binomial point process, network k-function K(t) (Atsuyuki
Okabe and Ikuho Yarnada, 2001) is defined as:

Reference: Atsuyuki Okabe and Ikuho Yarnada (2001) "The K-Function Method on a Network and Its Computational Implementation", Geographical Analysis, Vol.
33, No. 3, pp. 271-290
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Typical Network Cross K-function question
For instance, the set A may be the set of Airbnb listings and the set B may be the set of MRT
stations. We are concerned with whether the locations of MRT stations affect the
distribution of Airbnb listing.

Ho: Airbnb listings are distributed according to the binomial point process.

This assumption implies that Airbnb listings are uniformly and independently distributed
over LT regardless of the locations of MRT stations.

If the above hypothesis is rejected, we may infer that the locations of MRT stations affect
the distribution of Airbnb listing.

It should be noted that no assumption is made with respect to the distribution of points B.
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The Network Cross K-function

Reference: Atsuyuki Okabe and Ikuho Yarnada (2001) "The K-Function Method on a Network and Its Computational Implementation", Geographical Analysis, Vol.
33, No. 3, pp. 271-290
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